集合的详解

集合详解

一、集合和数组的区别
1、长度区别
      数组是固定的
      集合是可变的
2、内存区别
      数组可以是基本数据类型,也可以是引用数据类型
      集合只能是引用类型
3、元素内容
      数组只能存储同一种类型
      集合可以存储不同类型
二、Collection集合的方法
boolean add(E e) 在集合末尾添加元素
boolean remove(Object o)若本类集中有值与o的值相等的元素,则删除该元素,并返回true
void clear() 清除本集中所有元素
boolean contains(Object o)判断集合中是否包含某元素
boolean isEmpty   判断集合是否为空(return str == null || str.length() == 0;)
int size() 返回集合中的元素个数
boolean addAll(Collection c)将一个类集c中所有元素添加到另一个类集中
Object 【】 toArray() 返回一个包含了本集中所有元素的数组 
Iterator iterator() 迭代器 
三、常用集合的分类
Collection 接口的接口 对象的集合(单列集合)
├——-List 接口:元素按进入先后有序保存,可重复
│—————-├ LinkedList 接口实现类, 链表, 插入删除, 没有同步, 线程不安全
│—————-├ ArrayList 接口实现类, 数组, 随机访问, 没有同步, 线程不安全
│—————-└ Vector 接口实现类 数组, 同步, 线程安全
│ ———————-└ Stack 是Vector类的实现类
└——-Set 接口: 仅接收一次,不可重复,并做内部排序
├—————-└HashSet 使用hash表(数组)存储元素
│————————└ LinkedHashSet 链表维护元素的插入次序
└ —————-TreeSet 底层实现为二叉树,元素排好序

Map 接口 键值对的集合 (双列集合)
├———Hashtable 接口实现类, 同步, 线程安全
├———HashMap 接口实现类 ,没有同步, 线程不安全-
│—————–├ LinkedHashMap 双向链表和哈希表实现
│—————–└ WeakHashMap
├ ——–TreeMap 红黑树对所有的key进行排序
└———IdentifyHashMap
四、List和set的区别
有序性:List保证按插入顺序排序
       set存储和取出顺序不一致
唯一性:Lsit可以重复
       set元素唯一
获取元素:List可以通过索引直接操作元素
        set不能根据索引直接获取元素
2.List:
(1)ArrayList:底层数据结构是数组,查询快,增删慢,线程不安全,效率高,可以存储重复元素
(2)LinkedList 底层数据结构是链表,查询慢,增删快,线程不安全,效率高,可以存储重复元素
(3)Vector:底层数据结构是数组,查询快,增删慢,线程安全,效率低,可以存储重复元素

3.Set:
(1)HashSet底层数据结构采用哈希表实现,元素无序且唯一,线程不安全,效率高,可以存储null元素,元素的唯一性是靠所存储元素类型是否重写hashCode()和equals()方法来保证的,如果没有重写这两个方法,则无法保证元素的唯一性。
具体实现唯一性的比较过程:存储元素首先会使用hash()算法函数生成一个int类型hashCode散列值,然后已经的所存储的元素的hashCode值比较,如果hashCode不相等,则所存储的两个对象一定不相等,此时存储当前的新的hashCode值处的元素对象;如果hashCode相等,存储元素的对象还是不一定相等,此时会调用equals()方法判断两个对象的内容是否相等,如果内容相等,那么就是同一个对象,无需存储;如果比较的内容不相等,那么就是不同的对象,就该存储了,此时就要采用哈希的解决地址冲突算法,在当前hashCode值处类似一个新的链表, 在同一个hashCode值的后面存储存储不同的对象,这样就保证了元素的唯一性。
Set的实现类的集合对象中不能够有重复元素,HashSet也一样他是使用了一种标识来确定元素的不重复,HashSet用一种算法来保证HashSet中的元素是不重复的, HashSet采用哈希算法,底层用数组存储数据。默认初始化容量16,加载因子0.75。
Object类中的hashCode()的方法是所有子类都会继承这个方法,这个方法会用Hash算法算出一个Hash(哈希)码值返回,HashSet会用Hash码值去和数组长度取模, 模(这个模就是对象要存放在数组中的位置)相同时才会判断数组中的元素和要加入的对象的内容是否相同,如果不同才会添加进去。
Hash算法是一种散列算法。
Set hs=new HashSet();

hs.add(o);
|
o.hashCode();
|
o%当前总容量 (0–15)
|
| 不发生冲突
是否发生冲突—————–直接存放
|
| 发生冲突
| 假(不相等)
o1.equals(o2)——————-找一个空位添加
|
| 是(相等)
不添加
覆盖hashCode()方法的原则:
1、一定要让那些我们认为相同的对象返回相同的hashCode值
2、尽量让那些我们认为不同的对象返回不同的hashCode值,否则,就会增加冲突的概率。
3、尽量的让hashCode值散列开(两值用异或运算可使结果的范围更广)
HashSet 的实现比较简单,相关HashSet的操作,基本上都是直接调用底层HashMap的相关方法来完成,我们应该为保存到HashSet中的对象覆盖hashCode()和equals(),因为再将对象加入到HashSet中时,会首先调用hashCode方法计算出对象的hash值,接着根据此hash值调用HashMap中的hash方法,得到的值& (length-1)得到该对象在hashMap的transient Entry[] table中的保存位置的索引,接着找到数组中该索引位置保存的对象,并调用equals方法比较这两个对象是否相等,如果相等则不添加,注意:所以要存入HashSet的集合对象中的自定义类必须覆盖hashCode(),equals()两个方法,才能保证集合中元素不重复。在覆盖equals()和hashCode()方法时, 要使相同对象的hashCode()方法返回相同值,覆盖equals()方法再判断其内容。为了保证效率,所以在覆盖hashCode()方法时, 也要尽量使不同对象尽量返回不同的Hash码值。

如果数组中的元素和要加入的对象的hashCode()返回了相同的Hash值(相同对象),才会用equals()方法来判断两个对象的内容是否相同。

(2)LinkedHashSet底层数据结构采用链表和哈希表共同实现,链表保证了元素的顺序与存储顺序一致,哈希表保证了元素的唯一性。线程不安全,效率高。
(3)TreeSet底层数据结构采用二叉树来实现,元素唯一且已经排好序;唯一性同样需要重写hashCode和equals()方法,二叉树结构保证了元素的有序性。根据构造方法不同,分为自然排序(无参构造)和比较器排序(有参构造),自然排序要求元素必须实现Compareable接口,并重写里面的compareTo()方法,元素通过比较返回的int值来判断排序序列,返回0说明两个对象相同,不需要存储;比较器排需要在TreeSet初始化是时候传入一个实现Comparator接口的比较器对象,或者采用匿名内部类的方式new一个Comparator对象,重写里面的compare()方法;
(4)小结:Set具有与Collection完全一样的接口,因此没有任何额外的功能,不像前面有两个不同的List。实际上Set就是Collection,只 是行为不同。(这是继承与多态思想的典型应用:表现不同的行为。)Set不保存重复的元素。
Set 存入Set的每个元素都必须是唯一的,因为Set不保存重复元素。加入Set的元素必须定义equals()方法以确保对象的唯一性。Set与Collection有完全一样的接口。Set接口不保证维护元素的次序。

五、list和set总结
(1)、List,Set都是继承自Collection接口,Map则不是
(2)、List特点:元素有放入顺序,元素可重复 ,Set特点:元素无放入顺序,元素不可重复,重复元素会覆盖掉,(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的,加入Set 的Object必须定义equals()方法 ,另外list支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。)
(3).Set和List对比:
Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。
List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变。
(4)、ArrayList与LinkedList的区别和适用场景
Arraylist:
优点:ArrayList是实现了基于动态数组的数据结构,因为地址连续,一旦数据存储好了,查询操作效率会比较高(在内存里是连着放的)。
缺点:因为地址连续, ArrayList要移动数据,所以插入和删除操作效率比较低。

LinkedList:
优点:LinkedList基于链表的数据结构,地址是任意的,所以在开辟内存空间的时候不需要等一个连续的地址,对于新增和删除操作add和remove,LinedList比较占优势。LinkedList 适用于要头尾操作或插入指定位置的场景
缺点:因为LinkedList要移动指针,所以查询操作性能比较低。
适用场景分析:
当需要对数据进行对此访问的情况下选用ArrayList,当需要对数据进行多次增加删除修改时采用LinkedList。

六、线程安全的总结
5.线程安全集合类与非线程安全集合类
LinkedList、ArrayList、HashSet是非线程安全的,Vector是线程安全的;
HashMap是非线程安全的,HashTable是线程安全的;
StringBuilder是非线程安全的,StringBuffer是线程安全的。

数据结构
ArrayXxx:底层数据结构是数组,查询快,增删慢
LinkedXxx:底层数据结构是链表,查询慢,增删快
HashXxx:底层数据结构是哈希表。依赖两个方法:hashCode()和equals()
TreeXxx:底层数据结构是二叉树。两种方式排序:自然排序和比较器排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/782443.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python28-9 XGBoost算法

XGBoost(eXtreme Gradient Boosting,其正确拼写应该是 "Extreme Gradient Boosting",而XGBoost 的作者在命名时故意使用了不规范的拼写,将“eXtreme”中的“X”大写,以突出其极限性能和效率)是一…

【open3d专栏】利用PCA计算狭长点云的主方向

在点云处理中,PCA通常用于识别数据集中的主要方向,从而帮助理解数据的几何结构。 使用工具:python,open3d库 目的:计算狭长型点云的主方向 # -*- coding: utf-8 -*- """ Created on Sun Jul 7 11:50…

SpringMVC源码解析(一):web容器启动流程

SpringMVC源码系列文章 SpringMVC源码解析(一):web容器启动流程 目录 一、SpringMVC全注解配置1、pom文件2、web容器初始化类(代替web.xml)3、SpringMVC配置类(代替springmvc.xml)4、测试Controller 二、SpringServletContainerInitializer1、web容器初始化入口2、…

RNN 交叉熵

RNN善于处理时序 序列数据 简单RNN 展开就是 LSTM 遗忘门f_t决定上期记忆保留多少 隐藏层 在神经网络中,隐藏层指的是除了输入层和输出层之外的层,它们的输出不会直接用于网络的最终输出,而是作为中间步骤用于提取和转换数据。因此&#x…

LabVIEW光谱测试系统

在现代光通信系统中,光谱分析是不可或缺的工具。开发了一种基于LabVIEW的高分辨率光谱测试系统,通过对可调谐激光器、可编程光滤波器和数据采集系统的控制,实现了高效、高精度的光谱测量。 项目背景 随着光通信技术的迅速发展,对…

Filter和Listener

1. Filter 过滤器 1 过滤器简介 Filter过滤器是JavaWeb的三大组件(Servlet程序、Listener监听器、Filter过滤器)之一 Filter作用:拦截请求、过滤响应 是javaee的规范也是接口 拦截请求常见的应用有 权限检查日记操作事务管理 2 Filter …

刷题之多数元素(leetcode)

多数元素 哈希表解法&#xff1a; class Solution { public:/*int majorityElement(vector<int>& nums) {//map记录元素出现的次数&#xff0c;遍历map&#xff0c;求出出现次数最多的元素unordered_map<int,int>map;for(int i0;i<nums.size();i){map[nu…

详解Java垃圾回收(GC)机制

一、为什么需要垃圾回收 如果不进行垃圾回收&#xff0c;内存迟早都会被消耗空&#xff0c;因为我们在不断的分配内存空间而不进行回收。除非内存无限大&#xff0c;我们可以任性的分配而不回收&#xff0c;但是事实并非如此。所以&#xff0c;垃圾回收是必须的。 二、哪些内…

flutter环境安装(Mac+vscode)

以前据说flutter跨平台开发app很牛逼&#xff0c;最近突然想到这个东西&#xff0c;于是想体验一下flutter的开发流程&#xff0c;看看能否适合做独立开发。 我用的是mac&#xff0c;手机也是ios&#xff0c;就开始着手部署mac下的开发环境了。 开发后台的时候&#xff0c;一…

Vine: 一种全新定义 Vue 函数式组件的解决方案

7月6日的 vue confg 大会上 ShenQingchuan 大佬介绍了他的 Vue Vine 项目&#xff0c; 一种全新定义 Vue 函数式组件的解决方案。 和 React 的函数式组件有异曲同工之妙&#xff0c;写起来直接起飞了。 让我们来快速体验一下 vine&#xff0c; 看看到底给我们带来了哪些惊喜吧…

AI周报(6.30-7.6)

AI应用-AI控制F16战机与人类飞行员狗斗 2024年美国国防部领导下的国防部高级研究计划局&#xff08;DARPA&#xff09;宣布&#xff0c;世界上首次人工智能&#xff08;AI&#xff09;驾驶的战斗机与人类驾驶的战斗机之间的空战&#xff0c;于去年秋季在加利福尼亚州爱德华兹空…

基于CentOS Stream 9平台搭建RabbitMQ3.13.4以及开机自启

1. erlang与RabbitMQ对应版本参考&#xff1a;https://www.rabbitmq.com/which-erlang.html 2. 安装erlang 官网&#xff1a;https://www.erlang.org/downloads GitHub: https://github.com/rabbitmq/erlang-rpm/releases 2.1 安装依赖&#xff1a; yum -y install gcc glib…

【LeetCode】螺旋矩阵

目录 一、题目二、解法完整代码 一、题目 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5] 示例 2&…

zdppy + vue3 + antd 实现一个表格编辑行,批量删除功能

编辑单元格和多选的功能 首先是编辑单元格的功能&#xff0c;点击编辑按钮&#xff0c;可以直接在表格中队内容进行编辑&#xff0c;点击保存以后能够同步到数据库。 其次是多选的功能&#xff0c;点击每行前面的多选框按钮&#xff0c;我们可以选中多行。 完整后端代码&am…

axios和Mybatis

除了get和post方法还有其他的方法&#xff1a; 发送 PUT 请求 发送 PUT 请求通常用于更新服务器上的资源。 const updateData {title: foo updated,body: bar updated,userId: 1 };axios.put(https://jsonplaceholder.typicode.com/posts/1, updateData).then(function (res…

Camera Raw:编辑 - 配置文件

Camera Raw “编辑”模块中的配置文件 Profile面板为照片编辑提供了一个坚实的基础&#xff0c;能够显著改善照片的初始外观&#xff0c;使编辑过程更加高效和灵活。 使用配置文件&#xff0c;可以控制如何呈现照片中的颜色和色调。配置文件旨在作为照片编辑的起点和基础。 ◆ …

数列结构(3.9)——队列应用

树的层次遍历 树的层次遍历&#xff0c;也称为树的广度优先遍历&#xff0c;是一种按照树的层次顺序&#xff0c;从上到下、从左到右遍历树中所有节点的算法。在二叉树中&#xff0c;这种遍历方式通常使用队列来实现。下面是层次遍历的基本步骤&#xff1a; 创建一个空队列&a…

qemu模拟orangepi

前言 由于qemu目前只支持orange pipc单板&#xff0c;也就是H3型号&#xff0c;故我们就拿这个型号做测试 环境搭建 linux主机环境 我这里采用win10 WSL&#xff0c;且环境用的是openeuler的&#xff0c;在选择服务器类型可以按照自己喜好选择&#xff0c;也就是包安装方式…

【ARMv8/v9 GIC 系列 1.7 -- GIC PPI | SPI | SGI | LPI 中断使能配置介绍】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC 各种中断使能配置PPIs(每个处理器私有中断)SPIs(共享外设中断)SGIs(软件生成的中断)LPIs(局部中断)GIC 各种中断使能配置 在ARM GICv3和GICv4架构中,不同类型的中断(如PPIs、SPIs、SGIs和LPIs)可以通过不同的方式进…

SUSAN

1995年英国牛津大学的S.M.Smith提出了一种新的图像边缘检测算法SUSAN算法,不同于以前经典边缘检测算法,SUSAN算法基于灰度相似性比较,采用圆形模板,对图像进行灰度差统计,无需计算方向导数,而且具备积分特性,它简单而且有效,适用于图像中边缘和角点的检测,可以去除图像…